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Abstract

The development of the plastic zone in dynamic tear (DT) specimens and a non-standard
three point bending fracture test specimen used to measure fracture properties was the
main focus of the study. The ABAQUS finite element software was used to model the
elastic-plastic behaviour of the specimens. For the DT specimen, a crack was induced by
pressing the notch, followed by fatigue cracking at a limit load level of 40% of the
specimen limit load, whereas, the crack shape for the non-standard specimen was a
fatigue crack defined at approximately 30% of the limit load. The shapes of these cracks
were adequately modelled in the finite element analysis. The specimens were made of
350WT steel and 304 stainless steel materials. The specimens were loaded until fixed
amounts of permanent deformation were recorded. Results were obtained in the form of
plots, showing the progression of the plastic zone around the crack tip. For each case, the
results provide the following: mid point plastic deflection, stretch zone width and plastic
zone radius. The finite element results obtained were compared to experimental elastic
plastic testing where available, and reasonably accurate agreement was achieved.

Executive Summary

Plastic zone size prediction is important in fracture studies because its critical value is the
purest of fracture properties. All other fracture properties are related to critical plastic
zone size. If you can measure and calculate the plastic zone and have determined the
critical plastic zone size for the current temperature and constraint you have an accurate
means of predicting failure. We are endeavouring to develop models of plastic zone in
order to define the ratio of plastic zone radius to the stretch zone that develops as fracture
specimens are loaded. This will aid us to define the true limits of elastic plastic testing in
terms of shear lip at fracture. The models will also be used to enhance our experimental
programs aimed at directly measuring plastic zone sizes by magnetic techniques.

The development of the plastic zone in dynamic tear (DT) specimens and B = 1/2 W
three point bending fracture test specimens was the main focus of the study. The
ABAQUS finite element software was used to model the elastic-plastic behaviour of the
specimens. The specimens modelled were made of 350WT steel, the main steel on CPF
ships, and 304 stainless steel, a material that lends itself to magnetic methods of viewing
yielded areas. The specimens were loaded to fixed amounts of permanent deformation
and plots, showing the progression of the plastic zone around the crack tip, were
generated. For each case, the results provided: mid point plastic deflection, stretch zone
width and plastic zone radius.

The ratios of plastic zone to stretch zone in this study did not seem particularly
convincing and it is intended to expand this study to 3D and carry out a parametric study
of mesh size. (original signed J.R. Matthews)




Résumé

Le présent document porte principalement sur I’étude du développement de la zone plastique sur des
éprouvettes soumises a des essais de déchirement dynamique et sur une éprouvette soumise a un essal
non classique de rupture par flexion en trois points et sur son utilisation pour mesurer les propriétés
de rupture. On s’est servi du togiciel d’analyse par éléments finis ABAQUS pour modéliser le
comportement élastique-plastique des éprouvettes. Dans le cas du déchirement dynamique, une
fissure amorcée par pression sur I’encoche s’est transformée en fissure par fatigue a 40 % de la charge
limite de 1’éprouvette, tandis que dans ’essai non classique, il y a eu fissuration par fatigue a environ
30 % de la charge limite. Les formes de ces fissures ont été adéquatement modélisées lors de
I’analyse par éléments finis. Les éprouvettes étaient en acier 350 WT et en acier inoxydable 304.
Elles ont été sollicitées jusqu’a ce qu’une quantité fixe de déformation permanente soit enregistrée.
Les résultats sont présentés sous forme de graphiques montrant la progression de la zone plastique
autour de la téte des fissures. Dans chaque cas, les résultats ont permis de déterminer les parametres
suivants : le fléchissement plastique au point moyen, la largeur de la zone d’allongement et le rayon
de la zone plastique. Les résultats obtenus grice a I’analyse par éléments finis ont été comparés, le cas
échéant, a ceux des essais élastiques-plastiques et on a constaté une concordance assez précise.

Sommaire

1l est important de pouvoir prédire la taille des zones £€lastiques quand on étudie la dynamique des
ruptures, parce que la valeur critique de ce paramétre représente la forme la plus pure des propriétés
de rupture. Toutes les autres propriétés de rupture sont liées a la taille des zones plastiques critiques.
S1 on peut mesurer et calculer la zone plastique et si on arrive a déterminer la taille de la zone
plastique critique en fonction de la température et des contraintes actuelles, on dispose d’un moyen
précis de prédire les défaillances. Nous avons donc cherché a développer des modeles de zone
plastique afin de définir le rapport entre le rayon de la zone plastique et la zone d'allongement qui
augmente a mesure que les charges sont appliquées sur les éprouvettes lors d’essais de rupture. La
définition de ce parameétre nous permettra de définir les vraies limites des essais sur les propriétés
élastiques et plastiques des matériaux en ce qui concerne le trait de cisaillement de la rupture. Les
modeles vont aussi servir a améliorer nos programmes d’expérimentation visant a mesurer
directement Ia taille des zones plastiques par techniques magnétiques.

L’étude a donc porté principalement sur le développement de zones plastiques sur des éprouvettes
utilisées pour des essais de déchirement dynamique et sur des éprouvettes B = 12 W employées lors
d’essais sur la rupture par flexion en trois points. Le logiciel d’analyse par éléments finis ABAQUS a
été utilisé pour modéliser le comportement élastique-plastique des éprouvettes Les éprouvettes
modélisées étaient en acier 350 WT, Iacier le plus utilisé dans la construction des FCP, et en acier
inoxydable 304, un matériau qui se préte bien a [’étude des zones de déformation par méthodes
magnétiques. Les éprouvettes ont €té soumises a des charges jusqu’a ce que des quantités fixes de
déformation permanente soient enregistrées et des graphiques montrant la progression des zones
plastiques autour de la téte de fissure ont été produits. Dans chaque cas, les résultats ont permuis de
déterminer le fléchissement plastique au point moyen, la largeur de la zone d’allongement et le rayon
de la zone plastique.

Les rapports entre la zone plastique et la zone d’allongement ne sont pas convainguants et on
envisage de préparer des modeles a trois dimensions pour faire une étude paramétrique de la taille du
maillage.
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1.1

1. INTRODUCTION
1.1 Background

This study is a continuation of an effort to provide an understanding of the ratio of crack tip
blunting (stretch zone) to the plastic zone size (radius) in order to determine the upper limit of temperature
relative to full size transition curves where elastic plastic fracture becomes invalid. The finite element (FE)
technique is used to provide this ratio and the results of interest in the proposed work is the
investigation of the development of the plastic zone in dynamic tear (DT) test specimens and a
non-standard specimen. The dynamic tear test involves a single-edge notched beam that is impact
loaded in three-point bending, and the DT energy, which is a measure of resistance to rapid
progressive fracturing, is recorded. The specimens are fractured with drop-weight machines. The
size and shape of the plastic zone, the stretch zone and the shear lips that form are important

parameters that can be used to develop analytical models for describing the material behaviour.

In the Phase I study [1], the finite element methodology was utilized to provide an
understanding of the plastic zone size (radius) to crack tip blunting (stretch zone width). Finite
element analyses of three test specimen configurations were performed. The test specimens were
(1) a standard dynamic tear (DT) test specimen with 350WT steel; (i1) another standard DT
specimen with 304 stainless steel; and (iii) a non-standard three point bend specimen with 304
stainless steel. The ABAQUS finite element code was used to perform incremental elastic-plastic
analysis of the specimens. Intuition and experimental observation were used to develop
approximate stress-strain curves for the materials beyond the points where uniaxial stress-strain
data were available for the 35SO0WT steel and 304 stainless steel materials. Results computed
included the midpoint displacement; development of the plastic zone around the crack tip with
progression of load; the plastic zone radius ry; stretch zone width (SZW); and the ratio of plastic
zone radius to SZW. The results were presented in the form of contour plots and charts. The goal
of the present study is to continue the Phase I work in order to provide better accuracy and to apply
the methodology to other DT specimen configurations. The methodology is applied to two DT

and one non-standard test specimens made of 350WT and 304SS materials.

00-0091pt doc
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1.2

1.2 Objectives and Scope

Comparison of the finite element results with experimental results could not be made in
the Phase I study as these were being performed concurrently. Consequently, the full stress-strain
relations used in the Phase I study were based on intuition and limited experimental observations.
The full stress-strain relations for the 350WT and 304SS materials are now available from the
experimental investigations and would be used for the finite element models, in order to facilitate
suitable comparisons of the finite element results to experimental observations. Using these
material relations, the finite element methodology is applied to three specimen configurations,
including (1) the standard DT specimen with a width of 41lmm and 8mm thickness, (ii) the non-
standard (NS) specimen, and (iii) another DT specimen with a width of 50 mm and thickness of

25 mm.

Chapter 2 provides detailed descriptions of the specimen configurations considered in
the study, and a description of the crack tip shape. The finite element methodology utilized in the
investigation is presented in Chapter 3, which provides details of the finite element meshes,
materials constitutive models, boundary and loading conditions, and the solution methodology.
The finite element results are presented in Chapter 4, with discussions of the results. Finally,

Chapter S provides a summary of the study and the conclusions reached.

00-009rpt doc
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Figure 2.1: Configuration of DT Specimen
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2.1
2. PROBLEM DESCRIPTION

2.1 Specimen Configurations

A schematic representation of the test specimen is presented in Figure 2.1. In the present

study, six test configurations are analyzed. These include the following:

@) DT specimen, 350WT material, 8 mm thickness (designated as DT-350WT-08);

(ii) DT specimen, 304SS material, 8 mm thickness (designated as DT-304SS-08);

(iii) NS specimen, 350WT material, 12.5 mm thickness (designated as NS-350WT-12);

(iv) NS specimen, 304SS material, 12.5 mm thickness (designated as NS-304SS-12);

W) DT specimen, 350WT material, 25 mm thickness, 50 mm width (designated as DT-
350WT-25); and

(vi) DT specimen, 304SS material, 25 mm thickness, 50 mm width (designated as DT-304SS-
25).

The dimensions of the specimens are shown in Table 2.1.

2.2 Crack Tip Shape

The crack tip shape is that of a fatigue crack initially and a blunted fatigue crack
thereafter. For the DT specimen the notch is first machined with an included angle of 60°
followed by a pressing process that extends the notch 0.254 mm (0.010) with an included angle
of 40° and a resulting crack tip radius of 0.254 mm (0.001). This is followed by fatigue cracking
at a load level of no more than 40% of the current specimen limit load. This produces a sharp
fatigue crack of definable dimensions, which we would like to use in the FE simulation. This pre-

cracking extends the pressed notch by at least 1 mm.

The crack tip shape for the non-standard specimen is that of a well established fatigue
crack whose maximum loading has been defined by careful laboratory fatiguing (maximum load
approximately 30% of the limit load). The shape of the resulting crack tip and the configuration
of the crack along its entire length were acquired by sectioning. Changes in shape of the crack tip
as the FE model is run from one plastic boundary condition to another are compared to detailed
laboratory metallographic measurements. Detailed descriptions of the precracking process is

available in Reference [2].

00-009rpt doc
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2.2

2.3 Requirements

It was required to compute the progression of the plastic zone around the crack tip under
quasi-static loading conditions, for the three specimens. For each case, the following response

parameters were required:

(i) Progression of plastic zone around the crack tip, including contour plots of plastic strain;

(i1) Midpoint plastic deflections;

(iii)  Stretch zone width (i.e. distance from crack tip to interface of yield zone with side of
crack);

(iv)  Plastic zone radius (i.e. locus and maximum extent of plastic zone); and

v) Charts of SZW, plastic zone radius ry and ratio of SZW/r, for various plastic loading

conditions.
[
Table 2.1: Dimensions of Specimens
i Dimensions Specimen
ens Standard DT Non-Standard DT with 1" x 2” Bar

i Beam Length, L (mm) 181.00 125.00 225.00
' Beam Span, S (mm) 164.00 100.00 200.00

Crack Length, a (mm) 14.00%* 12.50%* 14.00*
f Beam Width, W (mm) 41.00 25.00 50.00

Beam Thickness, B (mm) 8.00 12.50 25.00

*a = 12 mm plus 0.254 mm pressing followed by fatigue extension to 14 mm

**a= 12.5 mm fatigue crack produced by rigorous process

i 00-009rpt doc



3.1

3. FINITE ELEMENT MODEL
3.1 Finite Element Approach

The ABAQUS finite element software [3] was used to model the elastic-plastic
behaviour of the DT specimen. The software has a wide range of non-linear materials models and
can account for large strains and displacements. However, the HyperMesh [9] general-purpose pre-
and post-processing program was used for model generation and results processing. Details of the

finite element model are provided below.

3.2 Finite Element Meshes

The HyperMesh code was used to generate the finite element models of the DT and non-
standard specimens, which were then translated to ABAQUS input files. The exact shapes of the
crack were obtained from DREA to enable accurate modelling of the structural configuration.
Figure 3.1 shows the shape of the fatigue crack in the DT specimen. This shape had to be modelled
accurately to provide meaningful results. Detailed 2-D finite element models of the specimen were
developed. In order to reduce the problem size only one-half of the structure was modelled using
symmetry conditions. The finite element models of the DT and non-standard (NS) specimens are
as shown in Figures 3.2-3.4, respectively. Four-noded plane strain elements were used to model
the structure. These elements allow for the treatment of large displacements, finite strains and
plasticity, which are expected to occur in the specimen. The close-up view shown in Figure 3.2

is applicable to all the specimens.

33 Material Models

An incremental rate independent plasticity theory available in the ABAQUS finite element
program [3] was used for the material constitutive model. This standard model for plasticity is

summarized in the Phase I report [1].

00-009rpt doc




3.2

The Kirchoff stress and logarithmic strain measures are employed because of advantages
gained in computational implementation. The assumption is made that the structure undergoes
only small changes in volume and, hence, the Kirchoff stresses are approximately equal to the
physically motivated Cauchy stresses. The uniaxial Cauchy stress-logarithmic strain constitutive
response of the material are formally input, in multilinear form, as Cauchy stress and logarithmic
plastic strain pairs for the ABAQUS program. The constitutive parameters for the 350WT and

304SS materials are described below.

3.3.1  350WT Steel

Figure 3.5 shows the stress-strain behaviour of 350 WT steel material. As shown in the
figure, data points are available up to 200% plastic strain. Recall that in the Phase I study the
measured stress-strain curve terminated at 25% strain, and an approximate curve was used in the
range from 25% to 250% plastic strain based on intuition and observation. It turns out that the
“rising curve” model used in Phase I is actually close to the current curve. The actual stress-strain
data points used for the finite element analysis are also shown in the figure. The yield stress was
taken as 465 MPa. Note that beyond 200% plastic strain, the curve was assumed to be flat with

the plastic strain increasing at constant plastic stress.

3.3.2 304 Stainless Steel

Figure 3.6 shows the stress-strain behaviour of the 304 stainless steel material. Data
points are available up to 300% plastic strain. In the Phase I study, the stress-strain behaviour was
taken from the literature and it varied significantly from the current stress-strain current (with
regards to the yield stress and plastic modulus). The actual stress-strain data points used for the
finite element analysis are also shown in the figure. The yield stress was taken as 498 MPa. Note
also that beyond 300% plastic strain, the curve was assumed to be flat with the plastic strain

increasing at constant plastic stress.
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33

34 Boundary Conditions and Loading

The following boundary conditions were applied:

At the support: v=0

Along the center line: u=0;

where, u,v are the displacements components in the longitudinal and transverse directions.

35 Loading

The load was applied in the form of a displacement of the top midpoint of the beam
specimen. The displacement was applied incrementally in steps of about 0.0001 mm. This is
different from the Phase I work in which the load was applied as a concentrated incremental load

at the top middle point of the beam.
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3.4

Figure 3.1: Shape of Fatigue Crack in DT Specimens
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Figure 3.2: FE Mesh of 8.0 mm Thick DT Specimen (a) Full Mesh (b) Close-up Mesh
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Real Stress-Real Strain Graph for 304 Stainless Steel
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Figure 3.5: Stress—Strain Curve of 350WT Steel

Real Stress-Real Strain Graph for 350 WT Steel

1200
1000 |
800 |

600
400

Real Stress (MPa)

200 |

0% 50% 100% 150% 200%

Plastic Strain (%)

Figure 3.6: Stress—Strain Curve of 304SS Steel
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4. RESULTS AND DISCUSSIONS

This chapter discusses the results of the study. For each specimen, results of the
midpoint displacement, plastic zone development, plastic strain, plastic radius, and stretch zone

width are provided in the following section.

4.1 Midpoint Displacements

In the Phase I study, the loading was applied in the form of an incremental concentrated
load at the top midpoint of the beam, and load displacement responses of the specimens were
provided [1]. In this study, the loading was applied in the form of incremental displacement at the
top midpoint of the beam. Preliminary analyses were performed to ensure that the two methods
provided the same results. This was accomplished by performing two analyses. In the first
analysis, a predetermined load was applied incrementally and the resulting midpoint displacement,
stresses and strains were noted. In the second analysis, the midpoint displacement obtained from
the first analysis was applied incrementally at the top midpoint of the beam. The resulting stresses
and strains were again noted and compared with those obtained from the first analysis. These

appeared to be identical confirming that the two approaches provided similar results.

Figure 4.1 shows the displacement contours of the DT-350WT-08 specimen at the last
displacement increment. This displacement contour pattern was observed at all displacement
increments for all the specimens. Detailed deformed and undeformed plots near the crack tip of
the DT-350WT-08 specimen are also shown in the Figure 4.1 illustrating the very large stretching

(strain) of the elements near the crack tip. Again, this behaviour was observed for all specimens.

Table 4.1 shows the maximum midpoint displacements attained for the six specimens.
These displacements are also shown in non-dimensional form with respect to the thicknesses. It
is seen that although the maximum midpoint displacements applied to all the specimens are close,
there is a wide variation in the values of the non-dimensional displacements due to the differences

in the specimen thickness.
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4.2 Plastic Zone Development

The development of the plastic zone around the crack tip was determined using contour
plots of the equivalent plastic strain or von Mises stress at various steps of the loaded. As was
noted in the Phase I study, the shapes and sizes of the plastic zones using the von Mises stress or

equivalent stress are very similar.

DT Specimens with 8mm Thickness

Figures 4.2 and 4.3 show the plastic strain contours at various displacement levels in the
DT-350WT-08 and DT-304SS-08 specimens, respectively. Note that different scales are used to
plot the contours at different load levels due to the differences in the magnitudes of the strains at
the various levels. However, it is seen that for a given specimen the size of the plastic zone as well
as the magnitude of the maximum plastic strains increase with the applied displacement. It is also
seen that the shape of the plastic strain contours for the DT-350WT-08 and DT-304SS-08
specimens are similar, as expected, since they both have the same dimensions, but differ only in
the material (350WT steel or 304 Stainless Steel). The 304SS material has a slightly higher yield
stress (498 MPa compared to 465 MPa for 350WT), as well as a slightly high plastic modulus (see
Figures 3.5 and 3.6). Therefore, at similar plastic displacement-to-thickness (d/B) ratios, during
the early stages of the loading, the magnitudes of the plastic strain in the two specimens were very
close, with those of the 304SS material being slightly smaller. However, at the later stages of the
loading, differences in the magnitudes of the maximum plastic strain become more significant.
Thus, the 304SS specimen can sustain significantly higher strains should more load be applied to

the structures.

NS Specimens

Figures 4.4 and 4.5 show contours of the von Mises stresses in the DT-350WT-08 and
DT-304SS-08 specimens and various displacement levels. These show more clearly the plastic
zones (that is areas with stress levels greater than the yield stresses). Again, the shapes of the stress
contours for the 350WT and 304SS materials are very similar. Differences occur only in the

magnitudes of the maximum stresses at the various displacement levels.
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Figures 4.6 and 4.7 show the plastic strain contours at various displacement levels in the
NS-350WT-12 and NS-304SS-12 specimens, respectively. Again, the plastic zone size increases
with the applied load increment and the shape of the plastic strain contours for both specimens are
very similar since they have the geometric configuration. However, the magnitudes of the
maximum plastic strains in the NS-304SS-12 specimen are generally smaller than those of the NS-
304SS-12 specimens at the various plastic displacement levels. As discussed earlier (for the 8mm
thick DT specimens), this is due to the fact that the 304SS material had a higher yield stress than
the 350WT material (498 MPa for 304SS compared to 465 MPa for 350WT), as well as higher
plastic modulus. The differences in the magnitudes of the maximum plastic strain is more
significant in the later stages of loading. Hence the 304SS specimen is expected to sustain
significantly higher strains than the 350WT specimen, if more load is applied to the structure. At
plastic displacement to thickness (d/B) ratios of up to 0.03, the shapes of plastic strain contours
for the 12.5mm thick non-standard and 8mm thick standard DT specimens are very similar.
Beyond this displacement level, the plastic strain contours of the 12.5mm non-standard specimens
tend to be narrower while also pointing upwards. However, the level of plastic strain reached at
this point is beyond the range (200% plastic strain for 350WT and 300% plastic strain for 304SS),
covered by the experimental real stress-real strain curve, the finite element model assumes that real
stress-real strain behaviours of the materials undergo plastic strain at constant stress (960 MPa for

350WT and 1450 MPa for 304SS).

Figures 4.8 and 4.9 show the contours of von Mises stresses in the NS-350WT-12 and
NS-304SS-12 specimens at various displacement levels. The shapes of the contours are similar
for the 350WT and 304SS materials; differences occur only in the magnitudes of the stresses. As
with the plastic strain contours, the plastic stress contours tend to get narrower, while also pointing

more towards the beam top, at higher displacement levels.

DT Specimens with 25mm Thickness
Figures 4.10 and 4.11 show the plastic strain contours at various displacement levels in
the DT-350WT-25 and DT-304SS-08 specimens, respectively. As observed in the other

specimens, the plastic zone size as well as the maximum plastic strains increase with the applied
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Uncertainties in the r,/SZW ratio are invariably introduced into the solution because of

uncertainties in measuring r, and SZW. It is expected that the values of ry and SZW are influenced

by the sizes of the element around the crack tip, but this was not investigated in the study. An

investigation of this is required to provide better accuracy.

Table 4.1: Maximum Midpoint Displacements Attained for Various Specimens

Maximum Midpoint
No. Specimen Displacement D,/B
1 DT-350WT-08 0.616 0.0770
2 DT-304SS-08 0.557 0.0696
3 NS-350WT-12 0.685 0.0548
4 NS-304SS-12 0.616 0.0493
5 DT-350WT-25 0.689 0.0275
6 DT-304SS-25 0.665 0.0266
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5.1
5. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and Conclusions

This study is a continuation of efforts to investigate plastic zone development in three
point bend fracture specimen. The finite element methodology was utilized to provide an
understanding of the plastic zone size (radius) to crack tip blunting (stretch zone width), in order
to be able to predict the upper limit where elastic plastic fracture becomes invalid. Finite
element analysis of six test specimens were performed. The test specimens were (i) a standard
dynamic tear DT test specimen with thickness of 8mm; (ii) a non-standard three point bend
specimen with thickness of 12.5mm, and (iii) another DT specimen with thickness of 25mm;
that were each made of 350WT and 304SS materials. The ABAQUS finite element code was

used to perform incremental elastic-plastic analysis of the specimens.

The results computed included the progression of plastic strain, plastic radius (r,),
stretch zone width (SZW), and the r,/SZW ratio with plastic displacement. Contour plots of
plastic strain and von Mises stresses presented at selected plastic displacement levels. The
maximum plastic strain, plastic radius and SZW increased parabolically with the applied
displacement. For a given non-dimensional displacement (D, /B), the maximum plastic strain
as well as r, and SZW increase with specimen thickness. Furthermore, it was observed that for
a given specimen configuration, the r, and SZW values are higher in the 350WT material than
in the 304SS material.

Plots of the r,/SZW ratios increase steadily and exhibit distinct points where the slopes
change significantly. The curves fit bilinear trends lines very well. The slopes of the initial
portions were always larger than those of the second parts of the bilinear curves. Furthermore,
the slopes tend to increase with specimen thickness (or bending stiffness), and for a given
specimen configuration, the slopes of the second portion of the curve for the 350WT and 304SS
specimens were approximately equal although the r,/SZW for the 304SS specimens were

generally slightly higher than those of the 350WT material.
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5.2

5.2 Recommendations

The experimental results on the plastic zone development in the specimens were not
available to this study. It is recommended that the results of this study be compared to the
experimental results when they are available. Based on these comparisons, it might be necessary
to refine the methodology to obtain better accuracy. One area that needs further investigation is
the effect of mesh size on the r,/SZW ratio. Also, the effect of the 2-D modelling on the results
should be investigated by performing some analyses on 3-D models. Such analysis would also

provide information on the shear lip sizes.
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